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A (k + 1)-dimensional vector space U of real-valued functions defined on a
subset of the real line is a Tchebycheff space (the linear space generated by a
Tchebycheff system) if the number of zeros and the number of alternations in
sign of each nonzero element of U is at most &. We show here that if U is a
Tchebycheff space of bounded functions defined on a subset 7 of the real line,
then for any pair of real-valued functions 4, , 4, defined on T for which there is
an element of U lying between A, and 4, and bounded away from them, there
exists an element of U that lies between /, and s, and oscillates between them
exactly k times. Additionally, a converse is given.

i. INTRODUCTION

Suppose U i1s a Tchebycheff space (see [2]) of bounded functions defined
on a subset 7 of the real line and suppose 4, , /; are two arbitrary real-valued
functions defined on T such that for some pe U and € > 0,

hy(t) + € < P(t) < y(t) — € (+)

for all r € T. We prove here that there is a ¥ € U such that Ay(¢) << u(t) < h(t)
for all te T and u oscillates k times between h, and /4, , touching each
alternately, where & is the degree of U.

This theorem, which we refer to as the “oscillation theorem for 7-spaces
of bounded functions,” has a heritage in a series of representation theorems
which go back to the well-known theorem of Pélya and Szegé [8] that a real
polynomial A, nonnegative on the entire real line, can be expressed as

h(t) = (A(1))* 4 (B(D)*,

where 4 and B are real polynomials whose respective degrees do not exceed
half the degree of 4. This theorem was later refined to allow for # to be
nonnegative simply for ¢+ > 0. In this case, /4 can be expressed as

h(t) = (A(1))? + (B(O) + t[(C(1)* + (D)),
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where 4 and B are as before and C and D are real polynomials whose
respective degrees do not cxceed d(deg/t - 1). Attnibuted to M. Fekete is
that when /(¢) 1s nonnegative simply for -~ t - ¢ 1, /r can be expressed as

Aty - (AW + (1 - DB

where deg 4 - degB - | Y deg A, and this was relined by the following
result attributed to F. Luckdcs.
Let #(t) be a real polynomial of degree A. nonnegative for | ! I

Then /1 can be expressed as

hir) (A FPUB(E)Y? 4 A s even,

- ) : Ly
(1 - eXCiry? Dy WA s odd.

N

where A, B, C. D are real polynomials whose degrees do not exceed A 2.
(k12) -~ 1otk - 12, and (k- 1)/2, respectively.

Y

These four results appear as problems 44 .47 in {3, VI, Sect. 6, p. 82}
(solutions on pp. 275-276). See also [9, pp. 4-5]. Representation (L) follows
from the theorem of Fejér [1]. which gives a nonnegative trigonometric
polynomial 4 with real coefficients as the square of the modulus of an algebraic
polynomial p of the same degree: f(f) = | p(z)12 for = - ¢/ However. the
representation of /1 in terms of p i1s not unique and thus representation (L)
is not unique.

In 1953, Karlin and Shapley [3, p. 35] showed that in representation (1),
if /i has fewer than & zeros counting multiplicities in [ 1. 1], then 4., B. (.,
and D could be required to have respective degrees precisely A2 (h.2y L.
(k 1)/2, and (k 1)/2. and in addition al} their roots could be required to
be real and to lie in the interval [ -1, 1]. In this case, the two polynomials u.,
u defined as

() (A(1))*. u(t) (1 U B())? when A is even,

w(t) (L =) C)3 ey (b - )}(D))? when £ is odd,

each oscillate between 0 and A{t) exactly & times. Specifically, they showed
that there are two polynomials u, i and & +- [ points ¢, satisfying - | Ly
ty Dty 1 such that

O -ulty = h(r) ftor r=[ -1, 1],

ulty) = (o u)r) ey - -ty - U
{osC)
O uge) ) for re{ 1.1},
(h - Upty) = ully) - (h upe,) = oultg)y o 0.

The even-indexed ¢,’s interior to [ 1. 1] must be double zeros of uw: und
similarly for the odd-indexed r’s and &i. For any u satisfying (osc). i«
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must satisfy the role of i in (osc) (and conversely). Hence, once a polynomial #
is found which satisfies (osc), i is determined and

h=u-+i.

A simple counting argument applied to (osc) involving degree shows that
and & must each be unique (if existent) for any continuous function % such
that A(t) > 0.

As it happens, the existence of polynomials u, i satisfying (osc) (allowing
different ¢;’s for each) does not depend upon 4 being a polynomial. Of course,
u -+ # is a polynomial of degree <k even if 4 is not, and hence the representa-
tion A == u + @ is valid if and only if 4 is also a polynomial of degree <Ck.
Tn 1963, Karlin [4] showed that if 4 is any positive continuous function and
k is any positive integer, there exist two polynomials #, ii of degree k and
2(k - 1) points s, , £, € [—1, 1] such that

0 <C u(r), u(t) << A1) for re[—1,1], (osc’)
t; <<t ’_l(fo) = (h— l_‘)(tx) = l_’(yfz) = (h — L‘)(fz) = =0
§;i < Siqy s (h—)(sy) = ti(sy) = (h — B)(s2) = ii(sy) = = = 0.

This proof depended upon the compactness of [—1, 1] (which could be
replaced by any closed interval) and the continuity of A and polynomials,
using as it did Brouwer’s fixed-point theorem. Tn fact, there was no need for
u and i actually to be polynomials, so long as they behaved reasonably
well like polynomials. By applying a smoothing process to k-differentiable
functions, an argument similar to that for polynomials showed that if 4 is
any positive continuous function and U is any T-space of degree k of con-
tinuous functions (of which the polynomials of degree <k are an example),
then there exist u, @ € U satisfying (osc’).

The final form of this theorem to date appeared in {6], where the authors
show that if U is a T-space of continuous functions defined on some closed
interval {a, b] and if A4, and A, are arbitrary continuous functions on {a, b]
such that for some p e U, () is satisfied, then there exist #,ii € U and
2(k -+ 1) points s;, t; € [a, b] such that (with A, = h;) when 7 is even and
h; = h, when i is odd) we have:

ho(t) < ult), () < (0 for tela,b]and fori==0,1,.,k,
i <<t (u — h)(t) = 0O; (OSC)
8; < Sivr s (i — hi)(s) = 0.

These two functions u, & are unique, and if 4, = 0 then A, € U if and only if
i == h; — u, in which case A, = u + 4.
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In 1974 Pinkus [7] further extended this to allow /1, and h; to be upper and
lower semicontinuous, respectively. However, the continuity of the elements
of U was still required.

In this paper we prove the corresponding theorem for arbitrary 7-spaces
of bounded function. wherein the interval {a, b] is replaced by an arbitrary
subset 7" of the real line and the elements of the [-space { need only be
bounded (not necessarily continuous). The functions /i, and 4, can be
completely arbitrary (so long as for some p< UL () is satisfied). Further-
more, this is the farthest that this line of theorems can be extended. as we
show in Section 6.

Our proof derives from 2 new characterization of  as a solutoin 1o a pair
of extremal problems which we informally describe next. Let us visualize
the set of elements of U that lie between Ay, and fi;, as curves that start from the
lefimost end of 7 and pass through the space between fi, and h, . Of these
elements and for any i - 0. consider those which touch A, at the least
possible value of the argument. say ¢ - 1, . which next touch /£, at the least
possible value of # [~ r,. say ¢ r;. then next touch A, ¢ h,) at the least
possible value of + = r o sav ¢ . and so on. finally touching £, | at the
least possible value of + i, say 1 1, . Of course for some 7 this set
may be empty. in which case we set r, - v forj i The elements of this
subset of U, let us call it L. , T U, are those elements of {7 which oscillate
as “fast™ as possible between /i, and /i, in the interval [ry . r;_,] (starting by
touching k). This is the first extremal problem. The element # is one which
then maximizes the oscillation in a different but related sense. Consider the
smallest A for which there is @ set of & A points w;; such that

e o n T and W o Wy
for each 7 :- 0.1,.... A+ 1 (with r ). Define the linear form d(u)
for each we U as

S(1r) }__ (1Y o)

Among the elements of U that lie between /1, and A, and touch 4, at -,
for 0 =7 i -7 A, the one that minimizes 8 oscillates between h, and A, &k times.
This is u.

To prove the theorem, the concept of “touching™ in the previous sketch
must be made precise. The complex variety of ways in which two dis-
continuous functions can “touch™ one another greatly complicates the
situation but, remarkably enough. the essence of the idea just sketched
carries the theorem even in its most general case.

One complication is that unless the elements of { are continuous. we do
not necessarily obtain 7, - 7, , as in (OSC). but rather 1, 6. This s
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because a discontinuous u can jump from h, to A, at a single point. While it is
natural to consider such a jump as a valid term in an oscillation sequence,
great care must be taken to avoid “invalid” oscillations. This is discussed
forthwith in the beginning of the next section.

Before proceeding, we introduce some notation which is used throughout.
The real line is denoted by R, the set of positive integers by N, the cardinality
of a set S by card S, the closure of TC R by cl 7. For any given T'C R, the
set of real-valued functions on T is denoted by #(T). The bounded and
continuous functions in %#(T') are denoted respectively by #(T) and €(T).

Of course, #(T), #(T), and ¥(T) are all vector spaces over R. Any vector
space properties such as linear dependence or dimension, pertaining to
elements or subsets F(T), are to be understood to be with respect to the real
ground field.

The set Z4(T) is understood to be topologized by the sup norm: ju} =
sup | u(t)! (r € T). Consistent with this, #(T) is topologized with the subbase:
the sets

(geF() If—g| <e

defined for all fe #(T) and all € > 0. The topology for #(T) is all unions
of finite intersections of elements from the subbase.

With respect to this topology, #(T) is Hausdorff and 1st-countable (each
point has a countable neighborhood base). Thus a subspace X C . #(T) is
sequentially compact {every sequence in X admits a subsequence which
converges to a point of X) iff every countable subset of X admits a limit point
in X. And in either case X is closed.

2. OSCILLATION OF A FUNCTION BETWEEN TwoO OTHERS

For hy , hy € F(T) we denote the set of functions that lie between A, and 4,
by [hy, y]:

(ho, ] = {ue F(T) IVt T, ht) < u(r) < A1)

The set of elements of [A,, /] that do not equal 4, or A, anywhere is
denoted by 1A, , I4[:

Vg, [ = {ueF(T) | VteT, hft) < u(t) < hft)).

The set of functions in )4, , #,[ that are bounded away from A, and A, is
denoted by 1, . Ill:

Nho - Bl = {ue F(T)| 3e > 0,V e T, hyft) + € << u(t) < hft) — €.
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When T 1s a compact set and the functions /., /1, are continuous then

Vg o AL Ty = Nhg [T 20T,

(2.1)
For a continuous function w ¢ [Ay, i} N @(T), we say that u “oscillates™
between A, and A, if u touches £, and /A, alternatingly (see Fig. D

FIGURE 1

Since u cannot touch Ay and /i, at the same point, the points at which u
touches k, and %, “alternatingly”

is well detined in the natural way, and the
number of such points gives a measure of the “oscillation™ of u between

hy and A, . In general, without continuity, i can touch A, and /1, at the same
0 1 J [} L
point and some of the ways in which this can happen are shown in Fig

-

e

2 - R
A - N :
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:;\m,,, —— —~ . - h
o)
t M t
Q

b

FiG. 2. Three ways of touching.

In order to distinguish between the various ways two functions may

“touch’ each other, we make the following definitions. For any w, v & #(T),
tecl T, and N the positive integers, define

utreiforVneN,

A, =T, 1, -t
such that
im 7, ' and hm e,y o))y - 0.
wirt o VaeN, dr, o T0

P
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such that
li’rln t, =t and lim (u(t,) — v(t,)) = 0,

utlvit=ulov:t and utv:t,

u~vuvit=ulv:t or ute:t,
u=uv:t-<u(t) = uvt),
Upv:t<=u~v:t or u(t) = (1),
Uz viteutv:t or u(t) = (1),
U=t u,v:t or u(t) = v(e).

Note that Y v : <> (u —v) 1 0: ¢ and so on. Also %, §, 2, + are used
to denote the negation of the respective symbols without the slashes. If
u ~ 0 : t we say that ¢ is an asymptotic zero of u.

In Fig. 2, for example, u T hy: tand u | A, : tin case (a);in (), u | Ayt t
and u | A : tin (b), u U1 by ¢t and u(t) = hy(t).

We now define oscillation sequences.

Let 7 be a bounded subset of R and let A, , s € #(T) be such that
Nho» Il = #. Let uelhy, i) As in the preceding, henceforth set #; = 4,
if jis even and &, = h, if j is odd. The lower oscillation sequence of u relative
to [hy, ] is t_q1, 1,1, ,... defined recursively in terms of an auxiliary
sequence ¢, ., t,, 1, ;... as follows.

Let#, = 1., == —o0, Forj =0, I,..., if #,_; has been defined, let

tj( = lnf{t > tj,1 [ U =~ hj : t}. (22)

Define t; = t;’ except in each of the following two cases, in which we define
t= 1y

’ v
u=h_4:4_4, u=h;:t,_,, tio Tty (2.3a)

or
U = hj~1 : tf—l . U i, hj' . tjfl 5 tj_:) - tl“-l . (2.3b)

2

(Note that (2.3a) occurs in Fig. 2a, and (2.3b) occurs in Fig. 2b.)

The sequence t_,, ty, t, ,... is defined to be the lower oscillation sequence
of u relative to [, , #,]. The lower oscillation of u relative to [k, , 5] is defined
to be O(v) = supi{i t, < -+ oo}. The upper oscillation sequence of u and the
upper oscillation O(u) of u relative to [k, , h;] are defined as above with A;
replaced by #;,, everywhere in the definition of ¢, , ¢, (i = —1,0, 1,...).

2.4y Note. If wellhy, ([ then —uell—hy, —h[[ and the lower
oscillation sequence for —u relative to [—h, , —h,] is the upper oscillation
sequence for u relative to [4,, h;]. Hence, it is sufficient to study lower
oscillation sequences.
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The proof of the next lemma follows by an elementary calculation.

(2.5) LEMMA.  Ler R be a bounded subset of R and let XY be sequentially
compact subsets of F(R). Then

S decl RO 2xe Xove Yov o~ v
is compact.
Since the remaining results in this section are concerned with oscillation
sequences, which were defined only for bounded 7. for the remainder of

this section T is assumed to denote a bounded subset of R.
The next two lemmas describe some basic features of oscillation sequences.

(2.6) Lemvia.  Let hy, hy = #(TY be such that [, . I ({ . For oany
welh, ) let toy oty .... be the lower oscillution sequence of u relative to

(he . ). Thea forj - G 1.

bt (2.6.1)

O w~ire (2.6.2)

A TR B R TR S S 12.6.3)

I PN T 1 we N (2.6.4)

Proof.  In what follows, 1," is as defined in (2.2).

(1) Since 1" =1, o 1t is clear from the definition of /" thut
forj=-0,1,..
fog 1.
On the other hand, from the definition of 7;. either 1, [, or i, /
Hence
1, - 1, 1. (1)

(2 Asin(l), t; == t;_qort; == t;/. ¢, = ¢; then from the definition
of 1;, either (2.3a) or (2.3b) holds, so u = h;:¢,. If t; = t, we use (2.5)
to show u = A, : ;. In fact, in this lemma, set

Res 1,y -ocfn T, X o= p. Y oAby g

Then by definition of #,” it follows that
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(3) Suppose u ~ h; : t for some t € Jt,;, t;[; then from the definition
of ¢’ it follows that
<t/ <t<t,

which contradicts (a). Hence
ZE]tj__l,tj[ :>U%hj:[, ]: O, 1,.,..

(4) As in the proof of (2), since 1, < oo, if £, = #,/ then u = h; : t,
from the definition of ¢; . Now if

=t =1
then again as in (2), using Lemma 2.5 it follows that
ulht;.

In the next lemma we prove some needed facts about the lower oscillation
sequence for the case when u is assumed not to “‘touch’ both 4, and A, at
the same point ¢, from the same side (which is the case in what follows).

(2.7) LeMMA.  Let hy, hy e F(T) be such that by, h([ = &. For any
uelhy, by, let t_;,ty,... be the lower oscillation sequence of u relative to
[hy , ). If for every tecl T

NEITHER (u thy:tand ut hy : 1) )
NOR (u | hy:tand u } /iy : t) h

then for j = 0, 1,...
UL hy ity =ty =1;; (2.7.1)
< oo, ti =t =u=h 1, and  w=l it (27.2)
f < 0, g =t =ty = U N g and u="h:t: (273
t <l 40 =1 < 1. (2.7.4)

Proof. (1) Assuming u | h; : t,_, and (x), it follows that u  A; 2 t;_, .
However, from (2.6.2) v~ h;,_; :t,_,. Hence u L h; 1t ti_y. Therefore,
when t;_, << t;_;, (2.3) is satisfied so from the definition of ¢;, t; = ¢,_;.
When t;,_, = t,_; , then from (2.6.4), u E2 h;_y @ t;_y . But we just showed that
wd hiy:t,_y,s0u=h;:t_ and thus (2.4) is satisfied so, also from the
definition of ¢, , t; = t;; .

(2) From (2.6.4) it follows that u = h; : t;. If t; = ¢/ (t; as in (2.2))
it follows from the definition of ¢; that either (2.3a) or (2.3b) holds, so
uZh, yit;g=1t.1f t; =1t,, =t/, then as in the proof of (2.6.4) it
follows that u [ A;: t; , = t; . By (*), u § hj_y : 8,1 . But w o~ h;_; 1 t;_, by
(2.6.2) so again we obtain u == h;_, : t;_; = {;.



160 GOPINATH AND KURSHAN

(3) Using (2.7.2) twice. get (w- hiyig oand w0 Lyt and
(= byt and w5 by o) 1y - 1), then it follows from definition
of ¢,., that u | /i,,, : 7, whence it follows from (+) that u y fi, - ¢, . sow
Bootsand w Mhy ot M, - 1, o 1 then as in the prool of (2.6.4).
i byt soagain as before. w - A cryand w M

K

(4) Follows trivially from (3) using ().

The two theorems which follow show that it Ou) i, although several
t;’s may coincide, the function u really does “oscillate™ »n times between /1,
and h, .

(2.8) THEOREM. Lot by, iy o #(TY be such that 1Ay, b([ <. For any
uelhy, i, every € 0 and any integer n such thar O - 0 Otn. there
exist s; T j - 0.1 i satisfving

T i (2. i: (2.8.1)

[
e

O - s,y I - e I LA IO TR

Proof. 1 (+) of Lemma 2.7 does not hold, then tor some 7 = ¢i 7 there are
either two strictly increasing or two strictly decreasing sequences (@), 49,
i 1.2,... such that

« { b, > 1
and
wlery - hlad e
Wby b)) e
The required s;'s can be selected as elements chosen alternatingly {from the

two sequences (a,}. (b;).

Now assume that {(+) of Lemma 2.7 holds {for afl ¢ ¢l 7. Let o2 be chosen
so that © <. n <. Q) and let Oy by 4eees Iy e DE Lhe lower oscillation
sequence of u. Since n =L Qu), t; < - oo forj  O..,n 1o 0, there is
an s, ¢ T such that | u(sy) - Asy)l < e (since v > /iy 1 1,). Hence, assume
now that n = 0. Define

& - dminlsy 1 ). I O tiy <t

We next choose s; ¢ T {or G -.j = n By (2.7.4), for j <. n, t;, < i; 4 and
hence there are four germane possibilities to consider:

(@) {4 =1, < £y . inowhich case since o~ Jy o we chowse w0

J g

such that 1, oo and {TR2) o satishied:
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(b) t,4 = t; < t;,, in which case by (2.7.2) u = h; : t; so we find
§; € T such that
t; < s, < t;+ 6,

§; == 1 if u= hj . t_,-

and (2.8.2) is satisfied;

(¢c) t;_y <<t;=t;,1,in which case by (2.7.2) u L ki1 t4 = t; SO we
find s, € T such that

1 — 06 <8 < 1y,

Sj:ft]' lﬁ u:hj:fj

and (2.8.2) is satisfied;

(d) t;.y =1¢, = t;4;, in which case by (2.7.3) u == h; : t; s0 t; € T and
we set s; = t;, whence (2.8.2) is satisfied.

It remains to verify (2.8.1) for the above four cases:

(a) Since in all cases |1, — s, < & for i = 0,...,, n, it follows that
Siq < tig+ 8 <t — 0 <

(b) Since t;_; = t;, case (c) or (d) applies in the definition of #;_; and
in each of these cases 5;_; <C 7;. By the definition of s; in case (b), #; < s; s0
S < t; <5;. But s, =1¢; only if w=»h;;:¢t whence u £ h;: t; so
t; << s; and thus in either case 5;_; <7 s; ;

(¢) Asin(a)wehaves; ; <t ;+0<t; — 38 <s;;

(d) Since w==h;:t;, u = h;_,:1; = t;_;. But in the definition of
§;_1 case (c) must apply since #,_, << t;,; = t;; by (2.74) so s, < t;.
Hence s, < #; = s;.

3. TCHEBYCHEFF SPACES

For notation, see [2].

Note that if UCF(T) is a T-space, then so is Ulg, whenever SCT
satisfies card S > dim U (where U | is the set of restrictions of the elements
of Uto §).

The next result shows that if ¥ and some v € 1}, , &[] are both in a T-space,
then condition (x) of Lemma 2.7 holds and hence the consequences (2.7.1)
to (2.7.4) apply.



162 GOPINATH AND KURSHAN

(3.1) Lemma.  Ler TC R and let by, hy € #(T). If for some v < J}4, ., 1L
an element u e (hy . h} satisfies S~(v — ©) < =3, then for every tecl T

NEITHER (i * /iy rand o * fip 2 1)
NOR (u [ hy:tand w i fiy 1),

Proof.  As in the first paragraph of the proof of Theorem 2.8.

In the following theorem we give an upper bound to O(u) and O(u) relative
to [h, , ] when « is an element of a T-space U and ), . [N U
namely if the degree of U is k., then

Oy -k, Oluy -~ k. 13.2)

(3.3) TueoreM. Let T be a bounded subset of R and let hy . hy o #(T).
For any ue [hy ., ] and v € WA, . A[

max! Q). Ot S (e v

Proof. Withuelh,, iyjandeelhy ., m{{wehaven ~veflhy -c.hy 1]
and 0ellh, - v.h, - ol[. Since O(u)(O(u)) relative to {h,, k] is equal to
O -~ o) O(u -~ v)) relative to [h, . h, ], it suffices to prove the
theorem for ¢ = 0.

From Theorem 2.8 it follows that for any € - 0 and any integer # such
that 0 =. »n < O(u), there exist s, ..., s, satisfying (2.8.1) and (2.8.2). Use
€ = Finf,ep min{, hy(t), i /(1) which is greater than zero since 0 € )4, . Iy
Then, from (2.8.2), (--Df u(s,) < e (- 1) As,). From the definition of ¢
and the fact that (1) /1(s;) =2 0, it follows that ( -1) u(s;) -0 for
i = 0,..,n, whence n == S (u). It follows that O(u) =2 S-(u).

An analogous proof shows that O(u) =~ S (1), and this completes the
proof.

4. THe COMPACTNESS OF [fiy. /] U

Let 7C R and suppose U is a finite-dimensional linear subspace of . #( 1)
with basis u, ...., 17, . Then the vector space isomorphism U ~ R* ! defined
by

>‘ Cll; =y venns Ci)
i
induces the /, norm on U.
On the other hand, if UC 2(T) then U is already normed by the sup norm.
It is well known that the topologies defined by any two norms on a finite-
dimensional vector space are the same.
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The proofs of the following results are left to the reader.

(4.1) TuEOREM. Let TC R, let by, hy, € #(T), and suppose U is a (k + 1)-
dimensional subspace of #(T). Then [h,, W} N U is l-compact in U.

(4.2) CorOLLARY. Let TCR, let hy, h e F(T) and suppose U is a
(k + 1)-dimensional subspace of #(T). Then [hy, hy] N U is compact (in the
induced sup-norm topology) in U.

(4.3) Lemma. Let X C #F(T) and fe F(T). Then for each tecl T, if X is
sequentially compact in F(T) so are each of the sets

Y_={ueX|lutf:t}, Y={ueX|lu=f:t}, Y.={ueX|ul|f:t}

(4.4) CorOLLARY. Let UC H(T) be a finite-dimensional linear subspace,
let X C U, and let f € F(T). Then for each t € cl T, if X is compact so are each
of the sets

fueX|ux/f:1), {ueX]urL—./':t}, fueXjulf:t}

5. THE OsCILLATION THEOREM

In this section we prove the Oscillation Theorem, which shows the existence
of the function u, i described in the introduction. As the properties obtained
in Lemmas 2.6, 2.7, and 3.1 are used frequently, for easy reference we list
them below.

We are concerned exclusively with the case in which the conditions of
Lemma 3.1 are satisfied, so we have for every tecl Tand uelh,, 1N U:

NEITHER (uthy:tanduth : t) (%)
NOR (u | hy:tand u | h i t). '

Therefore also the conclusions of Lemma 2.7 obtain. We next summarize
the needed consequences of Lemmas 2.6 and 2.7. Let r_;, # ,... be the
lower oscillation sequence of u relative to [A,, #;]. Then for j = 0, 1,...

Loy S 155 (a)

t; <~ =usxh;ty, L)

telt, il =uzh; ot (c)

L << too, b, =t =u = h;ity and u = ity (d)
ulhitig =t =1, (e)

<l mo, =t =t = ufhg and u=h;:t;, ()
t; <\ o0 = t; < tj.g. (8)

640/21/2-4
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{5.1) THEOREM. Letr T be a bounded subset of R, and suppose U C .Z4(T)
is a T-space of degree k. Given any two real-valued functions hy , hy on T such
that 1Why . [N U = o7, there exist u, 0 e U such that the lower oscillation
of u and the upper oscillation of i, relative to Thy . hi. are both equal to k.

Proof. 1In view of Note 2.4 1t is sufficient to prove the theorem for u.
Since Uis a T-space of degree k on 7, card 7" - k. Alsoif pe i, m{[ N U
then 0e Y, -~ p. .y - plL N U and if O(w) - k relative to [hy, - p, By - pl
then O(u -- p) = k relative to [h,, f1,}. Hence it is sufficient to assume that
0e .M. For any welh, . N U, let ¢ (u), ru), H{u).... denote the
lower oscillation sequence of u relative to [h,, hy]. We then define r,, U, .
i= --1,0, 1. as follows. Let r ~ and U, - [h, ] U For
i=-0,1,2.. define

ooty we U,
U, we Uy | tlu) i
Notice that

ue U, () I

J

for ;- i (1)

Therefore r; for j - i satisfy all the properties (a) to (g) of lower oscillation
sequences listed above,
Also, from (1) and (3.2) it follows that

ue U, =i Q) -k (2)
so in particular, r; = o and U, = o fori - k.

We next show by induction on j that for j 1.0....
rpoel oo o UL o and U; is compact. (3)
This is clearly true for | because by assumptions of the theorem.
U= [hy.m] U = = and from Corollary 4.2 U_, is compact. Suppose
(3) is true for j <= i and that r, < o0, Then r, { <0 —o0, since r,., = r;
by (a). Hence by the induction assumption U/, ; = ¢ and U,_; Is compact.

In this case if U; -+ © then forall ue U,_,

tioqu)y =iy r,o< t{u). (4)

Therefore, when U, -= . from the definition of r(u), (2.2) applies and for
each u e U;_, we have

tuy = nfyr rooyou bt (5

Hence from the definition of r,

r ilnf o~

it 3
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We now apply Lemma 2.5 by setting R = Jr,_;, +oo[N T, X = U,_; |z and
Y == {h; |z}. Since X is a continuous image of the compact U,_, , it is compact.
Hence Lemma 2.5 implies that there is some ue U;_, such that u |z =~
h;|lg:r;, whence u=h,:r;, and since r, ¢ R, ulh;,:r;if r,=r,_,.If
r; > ri_y then from (5), t{u) < r,. If r; = r;_; then {rom (e) it follows that
t{() = t;_y(u) = r;_y = r;. Therefore in either case t(u) < r;, which
contradicts (4). Hence U, = &.

We now show that U, is compact. If ue U, then r; = t;(u) for j < i
1t follows from (g) that

ri,_3 << i

Hence, by (b), (d), and (f), U, can be expressed in one of three ways:

if r; > Fiq then U7 = {M € Ul‘*—l ‘) u =~ hi : I’i},
. L .

if r,=r_1>r_s then U, ={ue U, ;|u=1"1:r
i r = = Fiy then U, ={uecU,_ lu | h :rl

In each of these cases it follows from Corollary 4.4 that U, is compact.
Hence if r; << + oo then U; == @ and U, is compact, which proves (3).

Let a = inf{te R ] card)— o0, t] N T > k}. Since card T > k it follows
that ¢ << = o. Hence, for some v < k,

P, <@ <K Fpyqp

Now we define a linear form 8 on U as described in the Introdutcion.
We show that the element », in U,, U,,,, or U,.,, depending respectively
upon whether a <r,,, a=r, <t.,, Or a="r,, =Tr,,, which
minimizes 8 there, satisfies O(u) = k.

Since card]—o0,alN T < + oo it follows that u ? A, :a for any i,
andanyue€ [h;, ] N U. Hence,ifa = r, ., thenr, , > r, sincea = r,; =
Fovo ==ty = U1 h,5 0 a by (f). We define A in each of the three cases:
@ <Py, @ =Py <Tlyyp, @= Ty = g <rygasdA=v,v-1,v4+2,
respectively. Then

Fpa <y

so from the definition of a,

A+l
card ) (Qria, il T) =k — A
i=0

Let w;;,i=0,1,.,A+ 1, be kK — A points such that

w €[0T and Wij < Wijpy



166 GOPINATH AND KURSHAN

Let & be the linear form on U defined by

Aol

d)y = Y (- 1YY ulw, ).
] i

Since r, =, a = - oz, U, is compact from (3). Thus, there is a v = {/ which
minimizes § over U, . We show that O(x) must equal &. Suppose O(u) k.
Let s, ., .... be the lower oscillation sequence of « relative to [/, . /1,]. Since
u=U,, from (2) it follows that A = O(u) and

toer for Al

We show that if O(u) <= k then we can find 4 ¢ = U such that for some
e 0. ucepe U and 8(u -~ ed) < S(u), which contradicts the definition
of u. 1t follows, in view of (2), that O(u) = k.

The cheice of ¢ is dependent on the lower oscillation sequence of u

and is defined in terms of its zeros z’s. Specifically we define -, =cl T as

follows for j = 0, L...., O(w).
1t

wth ot and tig 0t (6)

tet =" = supitelt,. . ;0 wu>h, (:¢i. Then =/ - ¢t because = - 1

implies from Lemma 2.5 that u % h; | : t; ; however, from () u " i, 21, -

u b h, i1, Therefore in this case 1z,/.6{ N 7T -~ -~ (recall u * A, : 1) and

relzonl o ugeho {7)

Let z; be any element in 1z, ;[ M 7, unless /A - |: we choose =, , ¢
1z5 s el N T to additionally satisfy

maxiw,. ;i Ty (¥)
l

This is possible since ty.; == ry.y = w,, . for every (.
When (6) does not hold, then

wuthot or t, ot N

in which case we define =, - - 1, . Define =, roand o0 o
From the above it is clear that for j « 0. 1.

SRR S SR (1,
let Z, » g, oI Tforj: 0.1, O(y) - 1. We next show that if

t =ct Z, then
i ,J;f/x, st ih
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forj = 0, 1,..., O(x) + 1. Indeed, from (10)

A Z;Clziy, 540V 12, 2
Uzl 0 Wiz iz

I telz;1, 40 then 2z, <z, <t < t;_, so (11) follows from (7). If
telt;y,z;{ then ¢;_; <t < z; < t; so (11) follows from (¢). If t = ¢;_, €
lz;-1, 2z;[ then z;_, < t;,_; < z;and hence u# } h;_; : 1,_; (otherwise (9) applies
and t;_; = z;_,). Therefore from (x), » 1 h;:#,_,. On the other hand
fs << 2,4 < t;4s0if u==h;: ¢, then t; = t,_, from the definition of 7,
(2.3), whence t,_, = z; = t; from (10), a contradiction. Thus, if r = ¢,_; €
lzia, 2zl then (11) holds. Continuing, if # = z; ; and u|; >~ h;lz 1 24
then Z;, %+ ¢ and # | h;:z;,, in which case z; ;, = t,_; (otherwise,
Zj_y <{ 2z <ty s0 ugkh;z;_y by (7). Therefore u | h;: t;_,, whence
from (e), z;., = t;y = t;. However, from (10), z;_, = z; s0o Z; = &, a
contradiction. Hence (11) obtains for ¢ = z;_;. Finally, if ¢ = z; and
ulz, = hylz, 1 z; then Z; # ¢ and u Mhitz . If z; < t; then (6) applies
and hence z; € Iz;/, ;1 C It;_y , t;{, whence u t A, : z; by (c). Hence z; = ¢; .
Thus # 1 A; : t;, in which case if #;_; < ¢; then by (6), z; < t; (=z,) so in
fact 1, , = t; and u Y h; : t;,_; . Therefore, from (), # 1 h;_; : t,_; and (9)
applies. Hence z;,, = t,_; (=1, = z;) so again Z; = &, a contradiction.
Thus (11) holds for ¢ = z;. This completes the proof that r ecl Z; = (11).

We next use [3, Theorem 2.4] to find the desired ¢ as described previously.
For this we define sequences (z;,),, C Tfor0 < j < O() as follows. From (1),
the definition of A and by (a)

=1 <a for j <A
Since card]— oo, a] N T < + o it follows that
unhit,  for j<X and wlh 1,
Thus (9) applies so
z; = t; (=F) for j <A
Also, by (b) and (if t,_, = £) by (d), u = h; : t; (j < A) so

z;i=4¢eT for j <A,
yth,\:t/\:*fzi\:t,\ET.

For j=0,1,..,A — 1 and for all n e N define z;, = z;. Now, notice that
from previous steps we have

n=h=n<a<fhpg=ha
so by the definition of z,,,,

Zya € 1 s
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whence f, -2 z,., ; that is,

Forallme N,y J hy:r,define =y, - zyand wWu  fnoor let(zy,), o T be
a sequence such that z, -2 z,, 2 7,4, lim, =y, -, and lim, (#(z,,)
hyzy)) == 0. Finally, when A =7 j < O(y) if z; = T define =, =, for all
neNand if z; ¢ T let (z;,), be any sequence such that z;, = 7, im,, =,, g
and (defining inductively) such that z; ;, - =, . Since it was assumed that
O(u) << k, the conditions of [3, Theorem 2.4] are all satistied with respect to =,
and (Zjn)n ’j i 0’ ey Q(I_‘)
Hence, there is a ¢ € U such that

3‘(){)\1 1‘ “.2)

Pz = 0 if -, eT, Jo 001 O, (13)
whhytry uoed L hy iy Ye -0 (14)
teZ, (1) 00 = Ol Ow) 1. (15

We now argue by contradiction that with this choice of ¢ thereisane 0
such that u -+~ e¢ €[4, , hy]. Indeed, suppose that for every e > 0, 4 - ed e
[f1y . ). Then there is a sequence (x,,) C T such that with i =0, or i - 1:
forevery ne N, (- Du - 1 ')(xy)y < (1) Alx,)

Since u € [hy . ], (--Di(h, - w)(x) <= 0 for all x & T Therefore

(- Dintély,y - (= Dihin,y  wly,))y 0,

Furthermore, from (12). lim, n *¢(x,) - 0. Therefore lim,{/74x,)
u(x,)) = 0. Recapitulating, if for every ¢ - O,y - ed ¢ [hy . k], then there
exists a sequence (x,) C 7 such that

{(— 1)y, 0 and Hm (AAx,) - wy,)) = 0. (16)

By taking a subsequence of (x,) if necessary, it may be assumed that {x,)
is either strictly monotonic or else constant. Since 7C {Jcl Z, (7 ~: 0, 1....
O(u) -+ 1), one of the two following cases must hold:

X, I for some j and all n: ih
OR
X, € 7, for some j and all sufficiently large #. (1D

We now show that each of these two cases leads to a contradiction of (16).

Case (). Since (x,) < 7. it follows that z. - 7. whence from (13
Az) - 0:ie. ¢(x,) - 0, which shows that {16) cannot hold.



OSCILLATION THEOREM FOR 7-SPACES 169

Case (II). If (16) does hold then for x =lim,x,, xeclZ; and
u ,’25 =~ h; Jz’ : x which from (11) implies that / == j (mod 2). On the other
hand, from (15), if x, € Z; and (—1)? ¢(x,) < 0 then i = j (mod 2). This
contradiction proves that also in this case (16) cannot hold.

Therefore, for some € > 0, since , ¢ € U,

U+t epelhy, m]NU=U.,.

We next show that # + e¢ € U, . Indeed, since forj < A, z; = r; € T, by (13),
é(r;) = 0, whence
u-+epel,,.

If wihy:or, then also zy =r,eT and ¢(r) =0, so ¥ +epeU,. If
u | hy:rythen by (14), u + ed | h, : r, and so in either case

u+epel,. (17)

Finally we are able to show that the definition of  as the element of U, which
minimizes 8, is contradicted by (17), which in turn was derived from the
assumption that O(u) < k.

Indeed, since 8 is linear, d(u + ep) = 6(u) + €5(¢). It remains only to
show that 8(¢) < 0, as then 6(x + e¢) < 3(u), which is a contradiction. But
S(d) = Site (—1) Y, dlwyy), where wyelriy,r[nT = Z, for i=0,
L., dand wy; €, zal O T = Z,., by (8). Also, by (2), A < O(%) and
thus by (15), 8(¢) < 0. However, by (13), ¢ has at least O(x) -+ 1 distinct
zeros, namely z; for j = 0, 1,..., O(x) and these are all distinct from the w;;’s
of which there are k — XA = k — O(n). Since ¢ € U, Z(¢) <. k and thus ¢
must be nonzero at no fewer than k — O(w) — (kK — (O(») + 1)) = 1 point
w;; , whence 8(¢) < 0.

(5.2) COROLLARY. If h is any positive element of a T-space U of degree k
such that 110, h[[ % & then
h=u+ u,

where u, ii are nonnegative elements of U N [0, h] such that O(u) = O(u) = k
relative to [0, A].

Proof. Let u be the element of U N [0, 4] such that O(u) = &, given by
Theorem 5.1. Then from Note 2.4, O(—u) relative to [—h, 0] is &,
whence O(h — ) relative to [0, #] is k. Set & to h — u and the proof is
complete.

(5.3) CorOLLARY. Let UC B(T) be any T-space of degree k on a bounded
set TC R. Given any hy , by € F(T) with N, , W[ N U #= o, there exists a
u€[hy, ] N U such that

vellhy, ([ = S(w—v) = k.
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Proof. Follows from Theorems 5.1 and 2.8.

(5.4) Notes. (1) The definttions here of ¥ and u differ from those of
Karlin and Studden [6] to the extent that when 4 is odd, what we define
to be u, they define to be ii and conversely. The Karlin and Studden definitions
presumably derive from the desire to have » and & correspond in kind to
g and &, two mass distribution functions which determine, respectively.
lower and upper bounds to a classical problem in the theory of moment
spaces. In order to avoid unnecessary complication in our paper, we choose
to define ¥ always as an element with lower oscillation k. independent of

the parity of %.

(2) The condition that I be bounded can be eliminated by appro-
priately defining « | ;2 ~-o¢ and w i h, 0 —oo, and allowing 2 as
“contributing’ points in the oscillation sequence. However, the same effect
is achieved by contracting 7 to a bounded set (say, by v - v ~tan ! for
ue F(T) and u«tan' e F(tan Y(T))), finding ¥ and & in the new space.
and then mapping back to the original space.

(3) Suppose a T-space U C #(T) has a basis ju;): . Then multi-
plication of each element of U by V(1) - Irmax{i u (). | wt) ..., ) !
gives a new T-space of bounded functions. However, an element of oscillation
k in this new space does not necessarily pull back to an element of oscillation 4
in the original space. The reason is that asymptotic zeroes can be destroyed
in the process.

(4) The conditions that the elements of (" be bounded cannot n
general be relaxed. For example, the T-space U of degree | spanned by 1.
tan t on ]--#/2, =/2] satisfies 0 e 1)~ 1. 1[]] and vet there is no element of
[- 1. 1] U of lower oscillation 1.

(5) We note that Corollary 5.3, which is almost Theorem 3.1, can be
proved through more direct geometric means, exploiting only the propertics
of finite dimensionality, compactness, and convexity as they occur.

6. A CONVERSE

From Theorem 5.1 we easily obtain

(6.1) THEOREM. Let T be a bounded subset of R and suppose U C A(T) is a
T-space of degree k. Given any subset S C T such that card S - k and any
two functions hy, , hy € F(S) such that 1hy, hi([ O Uy == there exist u,
i€ U such that the lower oscillution of u ¢ and the upper oscillation of i
relative to [hy . ) are both equal to k.
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We show here that this theorem holds only for 7-spaces. That is, we
show

(6.2) THEOREM. Let TCR, such that card T > k. Let UC F(T) be a
real vector space of dimension at most k + 1. If for each S C T satisfying
card S > k and each hy, hy € F(S) such that 1\hy, i[O Ulg =+ @, there
exists aue U (it € U) such that O(u ) = k(O(il |g) = k) relative to [hy , ],
then U is a T space of degree k.

Proof. Consider any set of points § = {1y <7, < - <7,4CT. Let
hy . hy € #(S) be such that 0 ]}4,, Iy[[. Hence, by the assumption of the
theorem there is a u € U such that O(u |;) relative to [A, , 4] is k. Therefore

u(ry) = h(r) H

(here h; = hg) if i is even and h; = A, if { is odd).
Let uy, 4y ..., u,, be a basis for u where m < k by assumption of the
theorem. Then (1) implies that there exist ¢, , i = 0, 1,..., m, such that

m
Z ciu(Ty) = hiry).
=0
Now it is easy to see that there exist k - | pairs of functions A/, #,7 € F(S)
such that 0e€ A/, A[[ and the vectors (A(7y), h(7y),..., b (T:)) are a
linearly independent set for j = 0, 1,..., k. Hence the assumptions of the
theorem imply that m = k and if the matrix V is defined by V;; = u,(s;)
i,j=20,1,.,k -+ 1then
det V == 0. )

Hence it follows that Z(u) < k for any 0 = u e U.

We next show that U is a 7T-space by showing that S—(u) < k for every
u 5= 0in U (see [2]). Suppose there exists a u € U such that S~(u) > k + 1.
We may assume without loss of generality that there exist £ + 2 points t, € 7,
i=0,1,.,(k+1) such that (—1Yu(t) >0, i=0,1,.,k-+1, and
fog <t;,i=1,.,k+4+ 1. Let

S = {1y, 11 yoees tiyabs
S = {ty yorr, biya)-

Define A, , by € F(S) such that
ho(t) = —] u(t)l, i=12,.,k+1, (3)
hy(2) = [ u(t)l, i=12.,k+ 1 4)
Since V(¢ ,..., tx,1) is such that det V £ 0 from (2) and &;, i = 0,..., k
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are bounded on S’ it can be easily shown that there exists M - - o such
that forallue Ui, .

wigelhy, ] O U o = ulty), -2 M. (3
Now let ', h; € #(S') such that
hy'ltg) = - M,
00 ) 2.
N N N V] )

() Iy

We show that there cannot in this case {when S (u) .> & - 1) be any
element e U, N [Ay. 'Y such that O(x) with respect to [ i) 1s AL
thus contradicting the assumptions of the theorem.

Sinceuec Ul N[, hy'Tand SCTS".

ucelhe , Min U

hence from (5), ' u(#,). -~ M, whence from the definition of lower oscillation
sequence and the fact that iyt = - M it follows that the lower oscillation

sequence of u has to be

Sy fy s by e L« Sy T

Therefore u(t;) = h(t;), i ~ 1,2,....,k -1, from the definition of lower
oscillation sequences. Hence {rom (3) and (4), u(t,) - u(t,). 7 == 1. 2,.... k1.
Therefore (v — u)e U has (K - }) zeroes f; , { 1, 2., k - 1. This implies
w - u = 0, since we already saw that Z(x - u) <k ifw - u 0. Hence
u(ty) == u(ty). However, by (6), u(t,) - h,'(ty). Hence u €[4y, #,"]. Therefore
for every u = 0 and u e U we have

maxiZ(u), S~(u)} - . k:

therefore U is a T-space of degree k (see [2]).
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