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A (k -+ I)-dimensional vector space U of real-valued functions defined on a
subset of the real line is a Tchebycheff space (the linear space generated by a
Tchebycheff system) if the number of zeros and the number of alternations in
sign of each nonzero element of U is at most k. We show here that if U is a
Tchebycheff space of bounded functions defined on a subset T of the real line,
then for any pair of real-valued functions hI) , h, defined on T for which there is
an element of U lying between ho and h, and bounded away from them, there
exists an element of U that lies between h" and h, and oscillates between them
exactly k times. Additionally, a converse is given.

I. INTRODUCTION

Suppose U is a Tchebycheff space (see [2]) of bounded functions defined
on a subset T of the real line and suppose ho , hI are two arbitrary real-valued
functions defined on T such that for some p E U and E > 0,

(-,)

for all t E T. We prove here that there is a !! E U such that ho(t) ,:;; !!(t) ,:;; hl (t)
for all t E T and y oscillates k times between ho and hI, touching each
alternately, where k is the degree of U.

This theorem, which we refer to as the "oscillation theorem for T-spaces
of bounded functions," has a heritage in a series of representation theorems
which go back to the well-known theorem ofP61ya and Szego [8] that a real
polynomial h, nonnegative on the entire real line, can be expressed as

h(t) = (A(t)? + (B(t))2,

where A and B are real polynomials whose respective degrees do not exceed
half the degree of h. This theorem was later refined to allow for h to be
nonnegative simply for t ~ O. In this case, h can be expressed as

h(t) = (A(t))2 + (B(t))2 + t[(CCt))2 + (D(t))2],
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where A and B are as before and C and D are real pol yno mials whose
respective degrees do not exceed Hdeg Ii 1). Attributed to M. Fekete is
that when h(t) is nonnegative simply for I I, h can be expressed as

h(t) (A(l)f (I I ")(B(t )r'.
where deg A deg B I ~ deg Ii, and this was relined by thc following
result attributed to F. Luck<lcs.

Let l1(t) be a reat polynomial of degree k. non negative for I.
Then 11 can be expressed as

h(l) (A(tr~ ( I le)( B(I)):'. it' f, IS C\,c'IL
tl)

( I 1)( C(t)):'. ( I I )(D(tI)C if f· IS odd.1\

where A. B, C. D arc real polynomials whose degrees do not exceed !, .:'.
(k/2) I. (k I);'2, and (k I)/2. respectively.

These four results appear as problems 44 47 in [8, VI, Sect. 6. p. i:l2]
(solutions on pp. 275 -276). Sec also [9. pp. 45J. Representation (L) follows
from the theorem of Fejer [I], which gives a nonnegative trigonometric
polynomial h with real coefficients as the square of the modulus of an algebraic
polynomial p of the same degree: h(8) i p(.:;)!"!. for.:; c iO • However. the
representation of h in terms of p is not unique ancl thus representation (L)

is not unique.
In 1953. Karlin and Shapley [5, p. 35] showed that in representation (Li.

if Ii has fewer than k zeros counting multi plicities in [ I. 1]. then A. B. C.
and D could be required to have respective degrees precisely k2. \k 2) 1
(k 1)/2, and (k I)/2. and in addition all their roots could be required to
be real and to lie in the interval [ ·1, 1]. In this case, the two polynomials y,

Ii defi ned as

1/(1) (AU»)",

y(t) ( I 1)(C(t W
y(1) (I

Il(t) (I

t C
)( B(t »)"

t)(D(tW

when k is even.

when k is odd.

each oscillate between () and hit) exactly k times. Specifically, they showed
that there arc two polynomials Y. il and k I points t i satisfying I l"

t] t l. 1 t ,. I such that

() y(t) h(t) for l I. I].

!.!( 10 ) (Ii y)(t I) y(t2) (Ii y)(t:l) (I:
(osc)

0 llU) 11(1 ) for I, I].

(Ii il)( to) Ii(tI) (Ii Ii )(1,,) U(t:l) o.

The even-indexed Ii'S interior to [ 1, I) must be double zeros of !!: ~I nd
similarly for the odd-indexed li'S and U. For any l! satisfying (osc). Ii y
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must satisfy the role ofu in (osc) (and conversely). Hence, once a polynomial y

is found which satisfies (osc), Ii is determined and

h = 11 + Ii.

A simple counting argument applied to (osc) involving degree shows that y
and Ii must each be unique (if existent) for any continuous function h such
that h(t) > O.

As it happens, the existence of polynomials y, U satisfying (osc) (allowing
different t/s for each) does not depend upon h being a polynomial. Of course,
y + uis a polynomial of degree ~k even if h is not, and hence the representa
tion h = y + fi is valid if and only if h is also a polynomial of degree ~k.

In 1963, Karlin [4] showed that if h is any positive continuous function and
k is any positive integer, there exist two polynomials y, Ii of degree k and
2(k + 1) points Si , t i E [-1, 1] such that

O~y(t),u(t)~h(t) for tE[--I,I], (osc')

t i < t i +! ; y(to) = (h - y)(tt) = y(t~) = (h - y)(t3) ,= ... = 0

Si < Si+I; (h - u)(so) = U(SI) = (h - u)(s~) = fi(S3) = ... = o.

This proof depended upon the compactness of [-I, 1] (which could be
replaced by any closed interval) and the continuity of h and polynomials,
using as it did Brouwer's fixed-point theorem. In fact, there was no need for
y and u actually to be polynomials, so long as they behaved reasonably
well like polynomials. By applying a smoothing process to k-differentiable
functions, an argument similar to that for polynomials showed that if h is
any positive continuous function and U is any T-space of degree k of con
tinuous functions (of which the polynomials of degree ~k are an example),
then there exist y, fi E U satisfying (osc').

The final form of this theorem to date appeared in [6], where the authors
show that if U is a T-space of continuous functions defined on some closed
interval [a, b) and if ho and hI are arbitrary continuous functions on [a, b]
such that for some p E U, (+) is satisfied, then there exist y, ii E U and
2(k + 1) points Si, t i E [a, b] such that (with hi = ho) when i is even and
hi = hI when i is odd) we have:

ho(t) ~ yet), for t E [a, b) and for i == 0,1, ... , k,

(y - hi)(ti) = 0;

(u - hi+1)(sJ == o.
(OSC)

These two functions y, u are unique, and if ho = °then hI E U if and only if
fi == hI - Y, in which case hI = y + fi.
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In 1974 Pinkus [7) further extended this to allow h" and h] to be upper and
lower semicontinuous, respectively. However. the continuity of the element'>
of U was still required.

In this paper we prove the corresponding theorem for arbitrary T-space"
of bounded function, wherein the interval [a, b) is replaced by an arbitr,u)
subset T of the real line and the elements of the T-spaee U need only be
bounded (not necessarily continuous). The functions h(; and h] can he
completely arbitrary (so long as for some /' U. ( ) is satisfied). Further
more, this is the farthest that this line of theorems can be extended. as we
show in Section 6.

Our proof derives from a new characterization of!! as a solutoin to a pair
of extremal problems which we informally describe next. Let us \isualize
the set of elements of U that lie between ho and hi 'os curves that start from the
leftmost end of T and pass through the space between II" and hi . or Ihe',e
elements and for any i O. consider those which touch h" at the least
possible value of the argument. say I 1'" • which next touch h] at the least
possible value of I 1'0' say I r J • then next touch he ( h,,) at the least
possible value of t - I']. say Ire,' and so (In. finally touching h, I at the
least possible value of I i'; . say I I' I' or C(lurse for ,,)I11C i thls SCI

may be empty. in which case we set i' -j for / i. The element:-; of thi,
subset of U, let us call it Li, 1 Li. arc those clements of C which oscillate
as "fast" as possible between h(! and h] in the interval [ro' ri~]] (starting by
touching ho). This is the lirst extremal problem. The element!! is one which
then maximizes the oscillation in a different hut related sense. Consider the
smallest A for which there is a set of k ,\ points Wij such that

Wi, ]1' :.1',[ n T and Ct)'I'_l

for each i 0, I, .... ,\
for each II E {j as

J (with ,.

6( 11)

I). Define the linear form b(lI)

I)' I II(W,,).

Among the elements of U that lie between h" and h[ and touch hi at i'

for a i A, the one that minimizes 8 oscillates between hI) and hI k times.
This is y.

To prove the theorem, the concept of "touching" in the previous sketch
must be made precise. The complex variety of ways in which two dis
continuous functions can "touch" one another greatly complicates the
situation but, remarkably enough, the essence of the idea just sketched
carries the theorem even in its most general case.

One complication is that unless the elements of L' are continuous. \\c do
not necessarily obtain I; f; 1 as in (OSCI. hut rather I. Ii I' rhi" I'
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because a discontinuous u can jump from ho to hI at a single point. While it is
natural to consider such a jump as a valid term in an oscillation sequence,
great care must be taken to avoid "invalid" oscillations. This is discussed
forthwith in the beginning of the next section.

Before proceeding, we introduce some notation which is used throughout.
The real line is denoted by 1R1, the set of positive integers by N, the cardinality
of a set S by card S, the closure of TC IR1 by cl T. For any given TC 1R1, the
set of real-valued functions on T is denoted by !F(T). The bounded and
continuous functions in /F(T) are denoted respectively by :!B(T) and '?f(T).

Of course, .F(T), !!J(T), and '?f(T) are all vector spaces over R Any vector
space properties such as linear dependence or dimension, pertaining to
elements or subsets !F(T), are to be understood to be with respect to the real
ground field.

The set :!B( T) is understood to be topologized by the sup norm: ill U =
sup i u(t)i (t EO T). Consistent with this, !F(T) is topologized with the subbase:
the sets

defined for all f EO !F(T) and all E ::> O. The topology for !F(T) is all unions
of finite intersections of elements from the subbase.

With respect to this topology, !F(T) is Hausdorff and Jst-countable (each
point has a countable neighborhood base). Thus a subspace XC !F(T) is
sequentially compact (every sequence in X admits a subsequence which
converges to a point of X) iff every countable subset of X admits a limit point
in X. And in either case X is closed.

2. OSCILLATION OF A FUNCTION BETWEEN Two OTHERS

For ho , hI EO !F(T) we denote the set of functions that lie between ho and hI
by rho , hI]:

The set of elements of [ho , hI] that do not equal ho or hI anywhere is
denoted by ]ho , hl[:

The set of functions in ]ho , hl [ that are bounded away from ho and hI is
denoted by ]]ho , hl [[:
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\Vhen T is a compact set and the functions ho ' hI are continuous then

(2.1 )

For a continuous function II [ho , hd (I if, (F), we say that If "osciliates"
between ho and h1 if u touches ho and hI alternatingly (see Fig. I).

Since u cannot touch ho and hI at the same poinl. the points at which u
touches ho and h1 "alternatingly" is well defined in the natural way, and the
number of such points gives a measure of the "oscillation" of u between
ho and h1 . In general, without continuity, II can touch hu and hI at the same
point and some of the ways in which thi,; can happen are shown in Fig. '

FIG. 2. Three ways of touching.

In order to distinguish between the various ways two functions may
"touch" each other, we make the following definitions. For any u, r I( n,
tEO cl T, and N the positive integers, define

u t c t Vn EO N, Cit" ,~ T, T'. t" I

such that

lim t" and lim (II( Tn) I'(T,,)) 0,
n II

II i /' I Vn E f>L T. (/1
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lim In = I
n

and lim (U(ln)- 1'(ln)) =c 0,
n

ut-J,V:f=u-J,V:I and u t l' : f,

U'---'V:f"'?U-J,V:I or u tv: I,

u= v : I <.? U(f) = V(/),

u~V:/"",u,......,v:1 or U(/) = 1'(1),
t

V:f=utV:f U(/) = l'(t ),u= or
t

V:f<-..,.u~V:t u(l) = df).u= or

Note that utI': I ~ (u - v) to: I and so on. Also +, t, ~, ~ are used
to denote the negation of the respective symbols without the slashes. Tf
u "-' °:f we say that f is an asymptolic zero of u.

Tn Fig. 2, for example, u tho: t and u -J, hI : t in case (a); in (c), u -J, ho : f

and u -J, hI : I; in (b), u -J, t hI : t and u(/) = ho(l)·
We now define oscillation sequences.
Let T be a bounded subset of IR and let ho, hI E YeT) be such that

]]ho , h1 [[ = . Let u E rho , hI]' As in the preceding, henceforth set hj = ho
if j is even and hi = hI if j is odd. The lower oscillalion sequence of u relative
to [ho, hI] is f_ 1 , 10 ,/1 , f2 , ... defined recursively in terms of an auxiliary
sequence (1 ' to', fl" t 2·, .. • as follows.

Let 1'1 == 1 1 cc - w. Forj c= 0, 1, ... , if fj-] has been defined, let

1/ = inf{t > Ii-! [ u ~ h j : t}. (2.2)

Define f j = t/ except in each of the following two cases, in which we define
Ii = I j _ 1 :

t hj - 1 tj _ 1 ,
t hj : t j _ 1 , I j - 2 < f j _ 1 ; (2.3a)u = u =

or

11 = h j - 1 : t j - 1 , u J, h j : f j - 1 , t j - 2 = t j _ 1 · (2.3b)

(Note that (2.3a) occurs in Fig. 2a, and (2.3b) occurs in Fig. 2b.)
The sequence '-1 , 10 , 11 , ... is defined to be the lower oscillation sequence

of u relative to rho , hI]. The lower oscillalion of u relative to [ho , hI] is defined
to be Q(u) = sup{i I ti < +w}. The upper oscillation sequence of u and the
upper oscillation (j(u) of u relative to [ho , hI] are defined as above with h j

replaced by hm everywhere in the definition of Ii' 1/ (i = -1,0, 1'00')'

(2.4) Nole. Tf u E ]]ho ,h1 [[ then -u E ]]-h1 ,-ho[[ and the lower
oscillation sequence for -u relative to [-hI' -ho] is the upper oscillation
sequence for u relative to [ho , hI]' Hence, it is sufficient to study lower
oscillation sequences.
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The proof of the next lemma follows by an elementary calculation.

(2.5) LlM7'.lA. Let R be a bounded subset of iR and let .\. Y" be sequential/r

compact subscts of f( R). Then

S :1 cl R ::ex X. r L.\ ~I . (:

is compact.

Since the remaining results in this section are concerned with ,)scillatioll
sequences. which were defined only for bounded T. for the remainder u1'
this section T is assumed to denote a bounded subset of IR.

The next two lemmas describe some basic features of oscillation ,equence,.

(2.6) LEM\lA. Let h(,. hI ,~.7( T) be such thai ]]ho • h1[[ 101 lill\

U E [ho • hI) let t 1.10 .... be Ihe lower oscillation sequcnce of /I re!alilc 10

[ho • h1 J. Thcll Ii)/"j O. I. ...

r \ r;

I, Cf II , Ii r

If; I 1;[ II , Ii r.

t, rf, I 1 r. II h I

126.3 )

12.6-1 \

Proof In what follows. t/ is as detined in (2.2).

(I) Since t'l
fori·' O. I. ...

1( C£ it IS clear from the definition of 1 . that

t; It;'.

On the other hand. from the definition of Ii' either r.
Hence

f, J ur I

la)

(2) As in (I), f; /'-1 or t, t i'. If f; (i' then from the detinition
of t j , either (2.3a) or (2.3b) holds, so u ~~ hi: t,. If t, f/ we use (2.5)
to show 11 :=:0 hi : t; . In fact. in this lemma, set

R ]t;_I' ,x[ n T. x y

Then by definition of 1/ it follows that

II ' Ii : I
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(3) Suppose u ~. hj : t for some t E ]tj_1 , tj[; then from the definition
of t/ it follows that

which contradicts (a). Hence

t E ]tj_1 , tj[ =:> U$ hj : t, j = 0, 1, ....

(4) As in the proof of (2), since t j < + 00, if t j =f t/ then U ~ hj : t j

from the definition of t j • Now if

tj =~ t j - 1 = t;'

then again as in (2), using Lemma 2.5 it follows that

u t h j : t j •

In the next lemma we prove some needed facts about the lower oscillation
sequence for the case when u is assumed not to "touch" both ho and hI at
the same point t, from the same side (which is the case in what follows).

(2.7) LEMMA. Let ho , hI E ff(T) be such that ]]ho , h1[[ c.;2 0. For any
u E rho ,hI]' let L 1 , to ,... be the lower oscillation sequence of u relative to
[ho , hI]' Iffor every t E cl T

NEITHER (u tho: t and u t hI : 1)

NOR (u ~ ho : t and u .j, hI : t)

thenforj = 0, I, ...

u .j, hj : t i - 1 ~ tj -1 = tj ;

, t ht; < -t- 00, t j _ 1 0= t j ~ U= j-l: t j

t j < + 00 ~ tj < tj+3 .

and

and

(2.7.1)
,

U = hj : t j ; (2.7.2)

1I = hj : t j : (2.7.3)

(2.7.4)

Proof (l) Assuming 1I t hi : li-l and (*), it follows that u t hj-l : I j- 1 .
tHowever, from (2.6.2) U "'"' hj- 1 : tj_1 . Hence u = hj- 1 : I j_1 . Therefore,

when I j- 2 < I j- 1 , (2.3) is satisfied so from the definition of I j , I j = tj- 1 •

When li-2 = I j_1 , then from (2.6.4), 1I ~ h;-1 : t;-1 . But we just showed that
u t hj_1 : tj- 1 , so u = hj_-1 : I j- 1 and thus (2.4) is satisfied so, also from the
definition of I j , t j = I j_1 .

(2) From (2.6.4) it follows that u ~ h j : I j • If I j F 1/ (I;' as in (2.2»
it follows from the definition of I j that either (2.3a) or (2.3b) holds, so
u ~ hj _ 1 : tj_1 = I j . If tj = I j_1 = t;', then as in the proof of (2.6.4) it
follows that u .j, h; : tj_1 = I; . By (*), u t hj- 1 : I j- 1 • But u '.:':' hj_1 : I j- 1 by
(2.6.2) so again we obtain u ..:i:.. h i - 1 : ti - 1 = ti .
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(3) Using (2.7.2) t\\ice. get (II h! j : [ and II I,; :!J and
(II h): t, and II 17,[: til. If t iil I;'J then it follows from definition
of I j , [ that II t h), I : I, whence it follows from ( ) that II : h, . I•• so Ii

h,: I; and II / h,l : I,. If I) 1 I. t.' J then as in the prou!" of (2.6.4).
II .; h; J : t; , so again as before. II hi: t, and II ;' h, J : ( •

(4) Foilows trivially from (3) using (k).

The two theorems which follow show that if Q(II) 11, although se\eraJ
I,'s may coincide. the function II really does "oscillate" Il times between 17"
and h[ .

(2.8) TlllORLVI. Lei ho ,h, :F( T) be such thai ]]ho , h l [[

u Cc [ho ,h]], crNr E 0 ({/ld allr inleger /l such Illar 0 II

niSI .I; c r. j O. l. .... 11 ,\(1/ isfring

. For al1l'

Qill l. theie

1;[

o 1)(11(,1,) E.

1.2, .... 11:

0.1 ..... 1/

12.8.1)

Proof If (I) of Lemma 2.7 does not hold, then for some f ci r there ~l!"e

either two strictly increasing or two strictly decreasing sequences (u, i. (h, l.
l. 2.... , such that

(I, I. hi " I.

and

1((0.) !l1l(O. ) Eo

11 117,) hj(h,) E.

The required s)'s can be selccted as elements chosen ~dternatingly frurn the
two sequences (a l ). (hi)'

NO'v assume that (!) of Lemma 2.7 holds for all I c! T. Let Il be chosen
so that 0 /l Q(u) and let ex;, lu , ... , t" ,... be the i()\\cr oscillation
sequence of II. Since /1 Q(II), I j cr,J for.i 0, ... , n. If n 0, there is
an So E T such that u(so) hll(.l·o): E (since u .•~. ho : to)' Hence. assume
now that n O. Define

.~ minUj J 1•.... iI. I, .

\Ve next choose.l J T for 0 .i /1. By (2.7.4), for .i
hence there are four germane possibilities to consider:

(a) f; 1 '- f I

such that f.

I" I. in which case since u -. I!): i
j

\\~' c!j'l",L'J,

and ~ ~ ;~) :"atisricd:
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(b) I j _ 1 = I j < IH1 , in which case by (2.7.2) 11 ~ hj : I j so we find
Sj E T such that

I j ~ Sj < I j + 0,

iff 11 = hj : t i

and (2.8.2) is satisfied;

(c) t j _ 1 < I j = t H1 , in which case by (2.7.2) 11 ~ h; : t;+1 = I j so we
find Sj E T such that

t j - I) < Sj ::;- t j ,

iff 11 = h j : t j

and (2.8.2) is satisfied;

(d) I j _ 1 = I J = IH ] , in which case by (2.7.3) 11 c= hj : I j so I j EO T and
we set Sj = I j , whence (2.8.2) is satisfied.

It remains to verify (2.8.1) for the above four cases:

(a) Since in all cases ! I, ~ Si I < (j for i = 0, ... , n, it follows that
Sj--l < I j _ 1 + [) ~ I j - [) < Sj ;

(b) Since I j - 1 = I j , case (c) or (d) applies in the definition of I j - 1 and
in each of these cases Sj_l ~ I j • By the definition of Sj in case (b), I j ~ Sj so
Sj_l ~ I j :::::; Sj' But Sj-1 = I j only if 11 == hj - 1 : I; whence 11 oF hj : I j so
I j < Sj and thus in either case Sj-1 < S; ;

(c) As in (a) we have S;_1 < I j _ 1 + [) :::::; I; - [) < Sj ;

(d) Since 11 == hj : I j , 11 7'~ hj - 1 : I j = 1;-1' But in the definition of
5;-1 case (c) must apply since 1;-2 < I j +1 = I j - 1 by (2.7.4) so Sj_l < I j •

Hence Sj-1 < I j =~ Sj •

3. TCHEBYCHEFF SPACES

For notation, see [2].
Note that if UC !F(T) is a T-space, then so is U is, whenever SC T

satisfies card S ~ dim U (where U Is is the set of restrictions of the elements
of U to S).

The next result shows that if 11 and some v E ]]ho , h1 [[ are both in aT-space,
then condition (*) of Lemma 2.7 holds and hence the consequences (2.7.1)
to (2.7.4) apply.
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(3.1) LEMMA. Let TC IR and let h", h1 E.F(T). If for some r·-:: ]]h", hill.
an element U E [ho ' hI] satisfies S- (u 1') Jj, then for every t E cl T

NEITHER (u ~ ho : (and u' hi: I)

NOR (U t hn : t and u ~ hi : I)
i· i

Proof As in the first paragraph of the proof of Theorem 2.S.
Tn the following theorem we give an upper bound to Q(u) and O(u) rdative

to [hp , hI] when II is an element of aT-space U and ]]ho ' hI [[ n U
namely if the degree of U is Ie then

()(iI ) k O(iI) k LL')

(3.3) THEOREM. Let T be a bounded subset o/IR alld let hn , hI I( n.
For any U E [ho , hd and r ]Jho ' hl [[

max:Q(u),O(u): S (11 I).

Proof With UE [ho , hlJ and I' E ]]ho ,hl [[ we have u r E [ho r, hI IJ
and 0 E )]ho - 1', h] r[[. Since Q(u)(O(u)) relative to [ho , hI] is equal to
Q(u- v)( O(u 1')) relative to [hn r, hI I], it suffices to prove the
theorem for r O.

From Theorem 2.8 it follows that for any E 0 and any integer II such
that 0 n Q(u), there exist So .... , .I n satisfying (2.8.1) and (2.8.2). Use
E-= } inflECT mini' ho(t)!, I hl ft)!) which is greater than zero since 0 E ])hn , hd[.
Then, from (2.8.2), (.- I)' u(s,) E: ( 1)' h,(s,). From the definition of E

and the fact that ( I)' h,(I,) 0, it follows that ( -I)' u(s,) 0 for
0, ... , n, whence II S (u). It follows that Q(u) S(u).

An analogous proof shows that O(u) - S (u), and this completes the
proof.

4. THE COMPACTNESS OF [h", lid n C

Let TC IR and suppose U is a finite-dimensional linear subspace of .J.'( n
with basis Un , ... , UI. • Then the vector space isomorphism U ~. :R,! I defined
by

I tiU ;'- >- (co , ... , c,.)
i·O

induces the 12 norm on U.
On the other hand, if U C .-$( T) then U is already normed by the sup norm.

It is well known that the topologies defIned by any two norms on a linite
dimensional vector space are the same.
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The proofs of the following results are left to the reader.
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(4.1) THEOREM. Let T C ~, let ho , hI E Y;(T), and suppose U is a (k + 1)
dimensional subspace of .r;;(T). Then rho , hI] n U is 12-compact in U.

(4.2) COROLLARY. Let T C~, let ho , hI E .~(T) and suppose U is a
(k + I)-dimensional subspace of :!leT). Then [ho , hI] n U is compact (in the
induced sup-norm topology) in U.

(4.3) LEMMA. Let XC Y;( T) and f E Y;(T). Then for each t E cl T, if X is
sequentially compact in Y;(T) so are each of the sets

L = {uEXI u t f: t}, Y = {uEXI u =f: t}, Y+ = {uEXI u ~f: t}.

(4.4) COROLLARY. Let U C /]j(T) be a finite-dimensional linear subspace,
let XC U, and letf E Y;(T). Then for each t E cl T, if X is compact so are each
of the sets

{u E X I u r::::. f: ti, { x , ~ t'· )U E ! U -- • t j, {UEXi utt':t}.

5. THE OSCILLATION THEOREM

1n this section we prove the Oscillation Theorem, which shows the existence
of the function y, U described in the introduction. As the properties obtained
in Lemmas 2.6, 2.7, and 3.1 are used frequently, for easy reference we list
them below.

We are concerned exclusively with the case in which the conditions of
Lemma 3.1 are satisfied, so we have for every t E cl T and U E rho , hI] n U:

NEITHER (u tho: t and u t hI : t)
NOR (u tho: t and u t hI : t).

Therefore also the conclusions of Lemma 2.7 obtain. We next summarize
the needed consequences of Lemmas 2.6 and 2.7. Let t-1 , to ,... be the
lower oscillation sequence of u relative to [ho , hd. Then for j = 0, 1, ...

t j - l :s:; t j , (a)

t i < --;-- 00 => U ~. hj : t j , (b)

t E ]t j _ l , t j [ => u~. h j : t, (c)

t j < +00, tj .,1 = t j => U ='= h j : t j and u ~ hj - 1 : t j , (d)

u t hj : ti-] => tj - l = t j , (e)

t j -;- 00, tj - l = t j c= t j + l => u tt hj +-1 : t j and u = hj : tj , (f)

ti < -+- 00 => t j < t j -'-3 . (g)
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(5.1) THEOREM. Let T be a bounded subset of ITt and suppose V C .J&( T)

is a T-.\pace of degree k. Giren any two real-valuedfunctions ho , hI on T sllch
that ]]ho ' h1 [[ n U , there exist y, 11 E V such that the lower oscillation
of y and the upper oscillation or 11. relatire to rho ' hI]' are both equal to k.

Proof In view of Note 2.4 it is sufficient to prove the theorem for y.

Since U is a T-space of degree k on T, card T k. Also if fJ E ]]ho , hI (( n C
then °E ]]hn · (I, hi p(( n V and if Q(y) k relative to (ho I), h] p]
then Q(y_. p) k relative to [170 , hI]' Hence it is sufficient to assume that
oE ]]hn , h1[[. For any II [hn , hI] n V, let tl(ll), [0(11), tl(ll), ... denote the
lower oscillation sequence of II relative to rho ,h]]. We then define 1',. U,.
I = 1,0, I, ... , as follows. Let I' I x. and U I rho ,hi] n U. For

0, I, 2.... define

r tnf: 1,(11) /I U, 1"

V, :/1 V t i( 11) ri
,

/ I

Notice that

/IE V [ ;(u) fj for i./
(I)

Therefore r i for j i satisfy all the properties (a) to (g) of lower oscillation
sequences listed above.

Also, from (I) and (3.2) it follows that

11 E V, Q(ll) (2)

so in particular. r i Cf~ and U/ for i
We next show by induction on j that for j

and

k.
1. 0....

V, is compact. ( 3)

This is clearly true for.i I because by assumptions of the theorem.
U 1 (ho ' hI] n V = and from Corollary 4.2 V -I is compact. Suppose
(3) is true for j i and that r i i. 00. Then 1',' CfJ, sll1ce rill',

by (a). Hence by the induction assumption Vi 1 and U/ I is compact.
rn this case if Vi then for all u E Vi 1

f;_·l ,., (4)

Therefore, when Vi
each u E Vi] we have

, from the definition of ti(u). (2.2) applies and for

inf~ t

Hence from the definition of r i

1';1 II - .. h;: t:. 15)

I' inf 1t
I/,·t', 1

r; -1 II -:--: h" : f:.
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We now apply Lemma 2.5 by setting R = ]rH , + oo[ n T, X = Vi-! IR and
y =~ {hi IR}' Since X is a continuous image of the compact Vi-I' it is compact.
Hence Lemma 2.5 implies that there is some U E V i - 1 such that U IR ~
hi IR : ri, whence u = hi : r i and since r'_1 rt R, U ~ hi: r, if r i = ri-l . If
r i > ri-! then from (5), I;(U) < l",. If r, = rH then from (e) it follows that
I,(U) = li_l(U) = ri-l = ri' Therefore in either case I,(u) < r" which
contradicts (4). Hence Vi =f- 0.

We now show that V, IS compact. If U E V, then rj = Ilu) for j < i.
It follows from (g) that

r'__ 3 < ri •

Hence, by (b), (d), and (0, Vi can be expressed in one of three ways:

if ri > ri .- 1

if r i = ri-l > ri-2

jf l"i = l"'_1 = l"i-2

then Vi ~= {u E ViI I u = hi : rJ,

then Vi =-, {u E V,-1 I II c-, hi : ri},

then Vi = {u E V,-I! II t hi: l"1}'

1n each of these cases it follows from Corollary 4.4 that Vi is compact.
Hence if ri < + 00 then Vi =1= 125 and Vi is compact, which proves (3).

Let a = inf{1 E IRi Icard]- 00, I] n T> k}. Since card T > k it follows
that a < ~- 00. Hence, for some v < k,

Now we define a linear form S on V as described in the Introdutcion.
We show that the element y, in V v , VV+l' or V"+2' depending respectively
upon whether a < rV+l' a = rV+l < r"+2 or a = rv+l = r"+2' which
minimizes S there, satisfies Q(y) = k.

Since card]- 00, a] n T < + 00 it follows that u +h, : a for any i,

and any u E [ho , h11n U. Hence, ifa =, r"+l then r"+3 > r"+1 since a = r"+l =

r"_12 ~= l""+3 =? U t h"+3 : a by ([). We define ;\ in each of the three cases:
a < r v+1 , a = r"+1 < 1""+2 , a = r v+! = r v+2 < r"+3 as A = v, v -'- 1, v + 2,
respectively. Then

so from the definition of a,

A+l
card U Ori-l , l";[ n T) ~ k- A.

i~O

Let Wij , i = 0, I, ... , A+ 1, be k - ;\ points such that

and



166 GOPINATII AND KURSHA'"

Let 8 be the linear form on U defined by

" 1

3(u) L ( 1)' I U(W'i)'
ill

Since r, (f x, U" is compact from (3). Thus. there is a y U which
minimizes 8 over U,\ . We show that Q(y) must equal k. Suppose Q{y) k.

Let t 1 , to .... be the lower oscillation sequence of y relative to (Ir" . hlJ. Since
1! := U" ' from (2) it follows that A Q(y) and

t i r for j ,\

We show that if Q(g) k then we can tind a cb U such that for some
E O. y (= EcP (= U" and 8(y E¢) 8(y), which contradicts the definition
of y. It follows. in view of (2), that Q(y) k.

The choice of ¢ is dependent on the lower oscillation sequence uf y

and is defined in terms of its zeros .::,'s. Specifically we define ::, -, cI T as
follows for j 0, I .... , Q(y).

Tf
!! " h) : f i and f; 1 t, (6)

let -.I sup{t E Jt, l' fA y '.~~ h j 1 : I;. Then::, f because ::
implies from Lemma 2.5 that!! \' hj 1: t l : however, from (,) y' h, : I.

y ! hi 1: t , . Therefore in this case ]::/, t j [ II T (recall y • h, : I ) and

y 'Cf. Ir. I : r

Let :.1 be any element in ]:/. til II T, unless
):~ I' t\el[ II T to additionally satisfy

/\ !: we choose -.\ 1

max\w.\. 11:
I

-.\ 1 .

This is possible since tAl 1',\,1

When (6) does not hold, then
w,\~ 1/ for every L

or (9)

in which case we define ::; 'i' Define:: 1 ~. and ::O'd' I "1:.

From the above it is clear that fori O. 1...

- 1 I, 1 I, . ( 10\

Let Z.i ].::.1 1 • ::,[ II T for j
t .." cI Z, then

O. I ..... Q(y) I. We next 5110\\ that if

111 )
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for j = 0, 1,... , Q(y) + 1. Indeed, from (10)
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cl Zj C ]Zj-1 , IH [ U ]/H ,Zj[

U (]Zj-l , Zj[ n {/j-l}) U {zj-l} U {Zj}.

If 1 E ]Zj-1 , I j - 1 [ then Z;_1 < Zj_1 < I < I j - 1 so (1I) follows from (7). If
1 E ]1 j _ 1 , Zj[ then t j - 1 < I < Zj ~ t j so (II) follows from (c). If I = I j - 1 E

]Zj-1 , Zj[ then Zj_1 < Ij - 1 < Zj and hence y t h j _ 1 ; 1j - 1 (otherwise (9) applies
and l j - 1 = Zj-1)' Therefore from (*), y +h j : l j _ 1 • On the other hand
l j _ 2 c:;: Zj_1 < 1j - 1 so if y ~ hj : 1j - 1 then t j = t j _ 1 from the definition of l j

(2.3), whence l j- 1 = Zj = 1j from (10), a contradiction. Thus, if I = I j - 1 E

]ZH , Zj[ then (II) holds. Continuing, if 1 = Zj-1 and Y Iz ~ h j Iz : Zj_1
, 1

then Zj 7'= 0 and Y ~ hj ; Zj-1, in which case Zj-1 = Ij _ 1 (otherwise,
Z~_1 < Zj_1 < I j _ 1 so !! *' hj : Zj_1 by (7». Therefore y { hj ; I j- 1 , whence
from (e), Zj_1 = 1j _ 1 = t j • However, from (10), Zj-1 = Zj so Zj = 0, a
contradiction. Hence (11) obtains for t = Zj-1' Finally, if I = Zj and
y Iz. ~ hj Iz. ; Zj then Zj 7'= .0 and y t hj ; Zj. If Zj < I j then (6) applies
and) hence z~ E ]z;', I j [ C ]/ j - 1 , li[, whence!! + h j : Zj by (c). Hence Zj = t j •

Thus!! t h j ; 1j , in which case if 1j _ 1 < Ij then by (6), Zj < 1j (=Zj) so in
fact I j _ 1 = I j and!! t hj ; I j _ 1 • Therefore, from (*), !! +h j _ 1 : I j _ 1 and (9)
applies. Hence Zj __ 1 = I j - 1 (= tj = Zj) so again Zj = 0, a contradiction.
Thus (I I) holds for I = Zj • This completes the proof that t E cl Zj ? (11).

We next use [3, Theorem 2.4] to find the desired r/> as described previously.
For this we define sequences (Zjn)n C Tfor °~ j ,,-,;; Q(y) as follows. From (1),
the definition of A and by (a)

for j c:;: A.

Since card]-- 00, a] n T < + oc it follows that

Thus (9) applies so

Zj = I j (=rj) for j 0::::; A.

Also, by (b) and (if IA- 1 = IA) by (d), u = hj ; 1j (j < A) so

Zj = t j E T for j < ,\,
!! t hA : I A => ZA = tA E T.

For j = 0, 1,... , A-I and for all n E N define Zin = Zj. Now, notice that
from previous steps we have

so by the definition of Z:\+l ,
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whence 1,\
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ZArI ; that is,

For all 11 Ec R::, if y ~ 11,\ : r,\ define Z,\n z\ and if!! • h, : r, let (z,,,),, r be
a sequence such that Z,\ _,I" -A, l' lim" Z\" Z,I and lim" (y(z,\,,1

hA(z'\lI) 0. Finally, when;\ j Q(y) if z) r definc Z/I, :: for all
11 EN and if z) ¢ T let (Zjnln be any sequence such that ::)" T, lim" z,,,
and (defining inductively) such that ::, -I" Z)" . Since it was assumed that
Q(y) < k, the conditions of [3, Theorem 2.4] are all satisfied with respect to :: I

and (Zjn)" ,j 0, 1, ... , Q(y).

Hence, there is a ¢ E U such that

j ~ 0, I, .. ., Q(y)

o

y ~ h., : r"

if z, r= T,

0,

I,

.I O. l .... , Qry),

°
i.

i ! 2)

(13)

\ 14)

( 15)

We now argue by contradiction that with this choice of ¢ there is an E °
such that y,- E¢ E [ho , h1]. Indeed, suppose that for every E 0, y- E¢ f7:

rho ' h1l Then there is a sequence (xn) C T such tbat with i 0, or i I:
for every 11 EN, (- 1)i(y 1/ 1¢)(X,,) ( l)i h,(x,,).

Since y E [ho ' h1], ( - -I }i(h; y)(x) °for all.\ T. Therefore

I )'(h i (\,,) UI.'.,,)) O.

Furthermore, from (12). lim ll 1/ I¢(.'.II)

y(x,,)) 0. Recapitulating, if for every E

exists a sequence (x,J C T such that

0. Therefore limllrh,rx,,)
O. !! E<:h ric [110 ' 11,], then there

(- I)' ¢(.'.,,) 0 and lim (h;(\,,1 y(\.,t!)
II

o. (16)

By taking a subsequence of (xu! if necessary, it may be assumed that (XII)

is either strictly monotonic or else constant. Since T C U cI Z; (j 0, I. ...
Q(y) .1- 1), one of the two following cases must hold:

OR

X n -i for some j and all II: \1)

for some j and all sufficiently large 11. (\1)

We now show that each of these two cases leads to a contradiction of ( 16).

Case (I). Since (XII) c: r. it follows that T. whence from (131.
¢(z;) 0: i.e., ¢(x,,) 0, which shows that (16) cannot hold.
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Case (II). If (16) does hold then for x =0 limn X n , X E cl Zj and
y iz ~ hi iz : x which from (11) implies that i ';E j (mod 2). On the other
hand, from '(15), if X n E Zj and (-l)i rp(xn) < 0 then i = j (mod 2). This
contradiction proves that also in this case (16) cannot hold.

Therefore, for some E > 0, since y, rp E U,

y + Erp E rho , hd n U = U- 1 •

We next show that y + E1> E U" . rndeed, since for j < il, Zj = rj E T, by (13),
rp(rj ) = 0, whence

y -'- E1> E U"-l .

If y t h" : 1"1. then also Zi\ = 1"1. E T and rp(l"i\) = 0, so y + Erp E Ui\' If
y .j, hA: I"A then by (14), y + E1> .j, hA: I"A and so in either case

(17)

Finally we are able to show that the definition of y as the element of Ui\ which
minimizes 8, is contradicted by (17), which in turn was derived from the
assumption that Q(y) < k.

Indeed, since 0 is linear, o(y + Erp) = o(y) + EO(1». [t remains only to
show that o(rp) < 0, as then o(y + Erp) < o(y), which is a contradiction. But
o(1» = L~:~ (-l)i Lj rp(Wij), where Wij E ]l"i-1 , I"i[ n T = Zi for i = 0,
1, ... , il and Wi\+lj E h , ZHl[ n T = ZHI by (8). Also, by (2), ,\ < Q(y) and
thus by (15), o(rp) :S; O. However, by (I3), 1> has at least Q(y) + 1 distinct
zeros, namely Zj for j = 0, I, ... , Q(y) and these are all distinct from the Wi/S

of which there are k - ,\ ? k- Q(y). Since 1> E U, Z(rp) :S; k and thus rp
must be nonzero at no fewer than k --- Q(y) - (k - (Q(y) + I) = 1 point
Wij, whence o(rp) < O.

(5.2) COROLLARY. If h is any positive element of aT-space U of degree k
such that ]]0, h[[ oF 0 then

h = y + ii,

where y, ii are nonnegative elements of U n [0, h] such that Q(y) = O(ii) = k
I"elative to [0, h].

Proof. Let y be the element of Un [0, h] such that Q(y) = k, given by
Theorem 5.1. Then from Note 2.4, O(-y) relative to [-h, 0] is k,
whence O(h - y) relative to [0, h] is k. Set it to h - y and the proof is
complete.

(5.3) COROLLARY. Let U C /]{j(T) be any T-space ofdegree k on a bounded
set T C IR. Given any ho , hI E !F(T) with ]]ho , hl [( n U oF 0, there exists a
y E rho , hI] n U such that

v E ]]ho ,hl [[ =>- S-(y - v) ~ k.
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Proof. Follows from Theorems 5.1 and 2.8.

(5.4) Notes. (J) The definitions here of IJ and ii differ from those of
Karlin and Studden [6] to the extent that when k is odd, what we define
to be y, they define to be li and conversely. The Karlin and Studden definitions
presumably derive from the desire to have y and ii correspond in kind to
g and 0, two mass distribution functions which determine, respectively.
lower and upper bounds to a classical problem in the theory of moment
spaces. In order to avoid unnecessary complication in our paper, we choose
to define y always as an element with lower oscillation k, independent of
the parity of k.

(2) The condition that r be bounded can be eliminated by appro
priately defining II {, hi : c"- and II ~ h,: -:fo. and allowing :f~ as
"contributing" points in the oscillation sequence. However, the same effect
is achieved by contracting T to a bounded set (say, by II .~ U tan -1 for
u E i#'(T) and u c tan 1 E .J'(tan I( Tm, finding y and 11 in the new space.
and then mapping back to the original space.

(3) Suppose aT-space UC .'F(T) has a basis {II,;; o' Then multi
plication of each element of U by VU) l!max{ uo(t)'.! IItU) •... , ' uJ,(t) :
gives a new T-space of bounded functions. However, an element of oscillation
k in this new space does not necessarily pull back to an element of oscillation I,
in the original space. The reason is that asymptotic zeroes can be destroyed
in the process.

(4) The conditions that the elements of C be bounded cannot in
general be relaxed. For example, the T·space U of degree 1 spanned by 1.
tan t on ] -7Ti2, 7T12[ satisfJes 0 ]]. 1. 1[[ and yet there is no element of
[- I, I] (\ U of lower oscillation I.

(5) We note that Corollary 5.3, which is almost Theorem 5.1, can be
proved through more direct geometric means, exploiting only the properties
of finite dimensionality, compactness, and convexity as they occur.

6. A CONVERSE

From Theorem 5.1 we easily obtain

(6.1) THEOREM. Let T be a bounded subset of~ and suppose U C /f)( T) is a
T-space of degree k. Given any subset 5 C T slIeh that card 5 k and anF
two functions ho , hI E .#'(5) such that JJho , h1 [[ (\ U ',s there exist y.

11 E U such that the lower oscillation of' y\ and t!le IIpper o\cillatiop or Ii

re/ath'e to [he, hI] arc both cqllal to k.
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We show here that this theorem holds only for T-spaces. That is, we
show

(6.2) THEOREM. Let T C~, such that card T :> k. Let U C ff(T) be a
real vector space of dimension at most k + I. If for each seT satisfying
card S :> k and each ho , hI E%'(S) such that ]]ho , h1 [[ (\ U Is ¥= 0, there
exists ayE U (if E U) such that Q(y Is) = k(O(ii Is) = k) relative to [ho , hI]'
then U is a T space of degree k.

Proof Consider any set of points S = fTO< Tl < ... < Tk} C T. Let
ho, hI E ff(S) be such that °E J]ho, h1 [[. Hence, by the assumption of the
theorem there is ayE U such that Q(y Is) relative to rho , hI] is k. Therefore

(1)

(here hi = ho) if i is even and hi = hI if i is odd).
Let Uo , U1 , ... , Um be a basis for u where m oS; k by assumption of the

theorem. Then (1) implies that there exist ci , i = 0, I, ... , m, such that

m

L CjUlTi) = hi(Ti)'
j~O

Now it is easy to see that there exist k + I pairs of functions h/, h/ E%'(S)
such that °E ]]h/, h1

j
[[ and the vectors (h/(To), h/h), ... , h/(Tk)) are a

linearly independent set for j c= 0, I, ... , k. Hence the assumptions of the
theorem imply that m = k and if the matrix V is defined by Vij = uj ( T;)
i,j = 0, I, ... , k + I then

det V ¥= 0. (2)

Hence it follows that Z(u) ~ k for any °cj= U E U.
We next show that U is a T-space by showing that S-(u) ~ k for every

u cf~ °in U (see [2]). Suppose there exists a U E U such that S-(u) :?- k + 1.
We may assume without loss of generality that there exist k + 2 points t i E T,
i =~ 0. 1, ... , (k + I) such that (-l)i u(t,.) > 0, i = 0, 1, ... , k + 1, and
t"_1 < ti , i =, 1'00" k + 1. Let

S' = {to , t1 , ••• , tk+l}'

S = {t1 , ... , tk+l}'

Define ho, hI E ff(S) such that

ho(t;) = -I u(tJI,

h1(ti) = I u(ti)l,

i= 1,2, ,k+1,

i = 1,2, , k + 1.

(3)

(4)

Since V(t1 , ... , tk+l) is such that det V ¥= °from (2) and Ui' i = 0,... , k
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are bounded on S' it can be easily shown that there exists !vi
that for all U E U

Now let ho', h1' E I(S') such that

At. 15)

110 ' (to)

1I['(tol

/1 0 ' (t,)

1I\'(t,)

-M.

1I( to)L

!l,,(t,) I

h\(ti)\'
1.1..... (/' J).

(6)

We show that there cannot in this case (when S (II)

element y E U iI' n [h(/. 111'] such that (j(y) with respect
thus contradicting the assumptions of the theorem.

Since y E U n [ho'. hI'] and S C S'.

k I) be any
to [ho'. h/] is c

hence from (5), . y(ro) M, whence from the de11nition of lower oscillation
sequence and the fact that ho(to) !vi it follows that the lower oscillation
sequence of y has to be

Therefore yeti) h,(td, I, 2, .... k l. from the definition of lower
oscillation sequences. Hence from (3) and (4), y(t,) 1I(t,). i .. ~ l. 2..... k l.
Therefore (y -- u) E U has (k 1) zeroes t, . i 1.2..... k l. This implies
y - II 0, since we already saw that Z(y II) kif Y II O. Hence
yUo) 11(10)' However. by (6), y(to) h1'(to). Hencey rf rho', h1']. Therefore
for every 11 * 0 and 1I E U we have

max{Z(1I), S-(1I): k:

therefore U is a T-space of degree k (see [2]).
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